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Abstract
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1 Introduction and Background

Economic theory posits that when individuals are rational agents with full information

and their actions only affect themselves, the decisions they make are privately and socially

optimal. How bad is it for society when all three of those assumptions are violated at the

same time due to the same temporary exogenous shock to cognition and decision-making

capacity? We provide a partial answer to this question using a setting that millions of people

find themselves in daily, in which irrational behavior, imperfect information, and negative

externalities can be extremely costly (read: fatal): driving. The temporary exogenous shock

to cognition we use is random variation in fine particulate matter pollution due to changes

in wind speed and wind direction, a source of identifying variation that has been used to

study the effect of fine particulate matter pollution on a variety of fatal health outcomes

(Deryugina et al., 2019; Deryugina and Reif, 2023; Persico and Marcotte, 2022).

Good driving is cognitively taxing. There is a big cognitive difference between driving well

in partial equilibrium (e.g., staying in one’s lane, driving the speed limit, following posted

signs, and using one’s turn signal) and driving well in general equilibrium (anticipating

other drivers swerving into your lane, paying enough attention to notice when a driver

from a different direction is running a red light, or avoiding that one person cutting across

five lanes of traffic to exit when you are also trying to merge to the right). The former

relies on the parts of the brain that deal with routine and automated tasks. The latter

relies on parts of the brain that deal with more complex tasks, like reaction time, rational

thought, emotional regulation, and heightened spatial awareness. Recent evidence suggests

that real-time decision-making and cognition is harmed by heightened particulate matter

pollution (Ailshire and Crimmins, 2014; Costa et al., 2020). In the case of driving, cognitive

impairment can lead to detrimental outcomes for both the driver and those they impact.

Driving under impairment is well studied, and a robust literature exists that studies

policies that affect drunk driving. This literature effectively examines the impact of reduced
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cognition for a subset of drivers. Prior research in this field has studied, among other policies,

the Minimum Legal Drinking Age (e.g., Carpenter and Dobkin, 2017; Carpenter et al., 2016),

Blood Alcohol Concentration laws and associated punishments (e.g., Freeman, 2007; Hansen,

2015), restrictions on hours for alcohol sales (e.g., Green and Krehic, 2022; Lovenheim and

Steefel, 2011), and ridesharing services such as Uber and Lyft (e.g., Burton, 2021; Dills and

Mulholland, 2018). These papers generally find that policies or factors that raise the implicit

cost of driving after drinking yield null to moderate reductions in alcohol-related fatal car

crashes. In other words, while the precise shape of the demand curve for drunk driving is

not well known, we know that the demand curve generally slopes down.

A smaller but related literature studies the myriad effects of policies aimed at reducing

crash risk for society’s newest drivers (Deza and Litwok, 2016; Huh and Reif, 2021). These

papers find that when teenagers are legally allowed to drive, they are more likely to die

from car crashes, and when restrictions are imposed on teenage driving (graduated driver

licensing), teenagers are less likely to get arrested during hours where there is a driving

curfew, implying they are driving less and getting into fewer crashes. This conforms with

brain imaging research on teenage brains and development of the prefrontal cortex which

show peaks and troughs of development, leading to changes in cognition, emotion, and

behavior (Giedd, 2008); and with specific applications to teen brain development and self-

regulation over behavior and emotions and its relevance to driving risks among youth (Dahl,

2008). For both populations, prior studies on policy changes can be considered as conditional

outcomes on specific populations. That is, conditional on drivers choosing to drive under the

influence (or conditional on the age of the driver), policies can be enacted to help mitigate

negative external consequences on others caused by lower cognition levels. In our work,

we show how a broad and temporary shock to cognitive ability across the whole driving

population results in more fatal crashes.

We examine the effect of fine particulate matter exposure, which can affect both alcohol
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and non-alcohol-related crashes, the latter of which comprise the majority of fatal incidents.1

Moreover, the cognitive shock we study also affects pedestrians and bicyclists who face the

external cost of impaired drivers most severely. The more drivers on the road with reduced

cognition, be it from alcohol consumption, a not-yet-fully-developed prefrontal cortex, age-

related cognitive decline, or environmental factors, ceteris paribus, the higher likelihood of

crashes.2 Conversely, if cognition could be improved by improving environmental conditions

across the board, our estimates imply that more than 1,700 motor vehicle fatalities could be

avoided yearly. We quantify the effect of reducing negative cognitive shocks to conservatively

be worth $12.8 billion dollars per year.

Our temporary exogenous shock to cognitive ability, fine particulate matter pollution

(PM2.5), has been established as harmful to brain function in both the immediate and the

longer term within the medical and epidemiological literatures. Reviews of this literature

include Anderson et al. (2012), Thangavel et al. (2022), and Cory-Slechta et al. (2023).

Prominent effects caused by small particulates are oxidative stress and neuro-inflammation,

which are seen in both humans and animals, and are supported by in-vitro studies (Costa

et al., 2020). An important contributor to particulate matter is traffic-related air pollution,

mostly ascribed to diesel exhaust (Costa et al., 2020). Ranft et al. (2009) show that long-

term exposure to traffic-related particulate matter impairs cognitive function in the elderly.

Fine particles are harmful to brains because they are small enough to cross the blood-

brain barrier and reduce oxygen to the brain. This affects both the central nervous system

and brain health. Hahad et al. (2020) discuss an increased risk of cerebrovascular and

neuropsychiatric disorders due to small particulates, showing that exposure contributes to

cognitive dysfunction, neurodevelopmental disorders, emotional responses such as depression,

increased risk of stroke, dementia, and Parkinson’s disease. Exposure to small particulates

1In 2020, 30% of motor vehicle fatalities were due to alcohol-impaired driving (Stewart, 2022).
2A point elaborated on more fully in the context of drunk driving with a theoretical model in Levitt and

Porter (2001).
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also negatively effects episodic memory (Ailshire and Crimmins, 2014).

While the precise molecular mechanisms of susceptibility remain largely unknown, recent

findings indicate that inflammation and oxidative stress play significant roles in air pollution-

induced disorders which can happen from both contemporaneous and prolonged exposure.

This is believed to be influenced by the increased production of proinflammatory mediators

and reactive oxygen (Hahad et al., 2020). A recent study used brain MRIs to measure changes

in study participants’ neural activity arising from short-term exposure to high concentrations

of diesel exhaust (PM2.5) in a lab setting (Gawryluk et al., 2023). This study found that

two hours of exposure to very high concentrations of diesel exhaust (300 µg/m3) caused

reductions in neural activity in numerous regions of the brain, including areas of the brain

that could reasonably be supposed to affect driving ability. Per our conversations with an

M.D.-Ph.D., the parts of the brain that lit up on the MRIs are parts of the brain that relate

to spatial awareness, reaction time, rational thought, and emotional regulation.

The existing economics literature on the effects of pollution on mortality generally fo-

cuses on internal causes of death for the elderly (Deryugina et al., 2019) and on external

causes whose negative externalities (e.g., suicide contagion) are indirect and not as immedi-

ate as those arising from motor vehicle crashes (Persico and Marcotte, 2022). Beyond these

very dire and consequential outcomes, particulate matter pollution has also been linked to

hampered real-time decision making and errors for professional chess players and umpires

for Major League Baseball (Archsmith et al., 2018; Künn et al., 2019). This work highlights

how pollution exposure results in real-time errors in decision-making among career experts

in their fields, albeit in a lower-stakes environment than driving, where both rash decisions

or small errors can result in fatal outcomes for drivers and those they share the road with.

Particulate matter pollution has also been linked to worse results in several other longer-

term outcomes. Indeed, researchers and policymakers alike are interested in the direct effects

of hampered cognition and the negative externalities from a society where everybody has
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lower levels of cognition. For example, a consistent finding on particulate exposure and hu-

man capital development is that higher pollution concentration days lead to worse education

outcomes (Komisarow and Pakhtigian, 2022; Persico and Venator, 2019; Pham and Roach,

2023). The proposed mechanism is that particulate matter pollution impacts the overall

learning environment within schools because poor air quality can lead to decreased moti-

vation and compromised concentration and error-making by students and teachers, which

ultimately undermines the quality of teaching and learning experiences.

The causal link between high pollution concentrations and cognitive errors can also be

seen in research showing that criminal activity and aggression increases with high particulate

matter levels (Bondy et al., 2020; Burkhardt et al., 2019; Herrnstadt et al., 2021; Jones, 2022).

Bondy et al. (2020) show that the particulate exposure at pollution levels that are well below

current regulatory standards drives more crime, and further that the effect, “appears to be

unevenly distributed across income groups” (Bondy et al., 2020). The former finding is

supported by Pham and Roach (2023), who show that education outcomes deteriorate at

levels lower than the current U.S. ambient standard. Further harms from particulate matter

pollution include documented earnings losses (Borgschulte et al., 2022). These authors link

satellite smoke plumes with labor market outcomes and find that an additional day of smoke

exposure reduces quarterly earnings by about 0.1 percent, an effect driven in part by labor

force exits and reduced employment.

The paper most closely related to ours, Sager (2019), also studies the effect of fine par-

ticulate matter pollution on fatal car crashes using temperature inversions as the exogenous

determinant of pollution in the United Kingdom. We find results consistent with Sager

(2019) using a different source of exogenous variation and a different context in terms of

both pollution and motor vehicle crashes. For example, both population and average car

sizes are much larger in the United States, there is a very different ‘car culture’ in the

U.S. with longer commutes and suburban sprawl, and the exposure to sources of particulate
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matter pollution varies greatly between the two countries.

We contribute to the myriad sub-fields of economics studying the effect of particulate

matter exposure by getting closer to an analysis of the general equilibrium effects of fine

particulate matter pollution’s cognitive harms and by more thoroughly honing in on the

likely mechanism. We also contribute to the literature on determinants of fatal car crashes,

with our instrument for pollution providing an exogenous shock to everybody’s cognition in a

localized geographic area, whereas most prior studies examine the effects of efforts to reduce

drunk driving. And while our instrument (wind speed and direction) is not perfect, because

very high winds can affect driving ability, the first-stage regression predicting pollution con-

centrations using wind speed and direction has a negative coefficient for wind speed, meaning

more wind predicts less pollution. We find more predicted pollution means more fatal car

crashes, making the issue with the wind instrument one of attenuation bias. Therefore, our

estimates can be considered a lower bound of the effect of pollution on driving.

Moreover, as climate policy is enacted to reduce emissions from both the transportation

and the electric power sectors, both of which contribute to particulate matter concentrations,

our research shows that the effects of wildfires that are more prevalent and widespread in

a warming world will continue to impact cognition and driving – even after transportation

and industrial sources may have reduced their particulate matter emissions.

In this paper, we find robust and consistent evidence that particulate matter exposure

leads to more driving fatalities. Our identification strategy follows the standard instrumental

variables method that many others have used, which takes advantage of exogenous changes

in wind speed and wind direction to determine the amount of pollution people are exposed

to on a given day (e.g., Deryugina et al., 2019; Herrnstadt et al., 2021; Persico and Marcotte,

2022). Much of the variation in particulate matter exposure is due to the built environment

in and around an area such as highways or electricity generation from fossil fuels. In fact,

Currie et al. (2022) have shown that the Clean Air Act reduced localized pollution and is
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responsible for reducing disparities between white and black particulate matter exposure.

Particulate matter pollution is a by-product of the combustion of fuels from sources such

as wildfires, power plants, and cars. These are measured in microns per cubic meter, and

the EPA currently considers concentrations greater than 12 µg/m3 to be harmful to human

health. That said, it is not uncommon for concentrations to peak at much higher levels than

this. Moreover, prior work has shown that these small particulates can travel great distances

and are not confined to their area of origin (Burke et al., 2021; Fowlie et al., 2019; Zou,

2021).

Figure 1 shows how annual average particulate matter concentrations have changed over

time, and how much geographic variation there is across the United States using annual

summary data available from Van Donkelaar et al. (2016).3 The top portion of this figure

shows annual averages at a tenth of a degree resolution for 2004, the year prior to the court-

ordered enforcement of the 1990 update to the Clean Air Act (and the year prior to the start

of our sample). The bottom portion shows annual averages at the same resolution in 2019,

the last year in our sample. This figure shows how average annual PM2.5 concentrations have

fallen across the nation in recent years, resulting in much less geographic variation in fine

particulate matter pollution at the annual level. Nevertheless, day-to-day variation can still

peak at thresholds well above the EPA’s guidance of 12 microns per cubic meter.

For these reasons, our use of wind direction and wind speed helps to alleviate multiple

issues of measurement error that would bias our results. One source of attenuating mea-

surement error is that pollution monitor locations are fixed, hence they will fail to capture

within-county variation in pollution, as noted in Persico and Marcotte (2022). Suppose the

pollution monitor registers high air pollution one day while the rest of the county has low

pollution, and the next day the pollution monitor registers low air pollution while the rest

of the county has high pollution. Suppose on each day there is a fatal crash in the high

3Portions of Canada and Mexico are also shown in this figure, though we only use data from the United
States in our models below.
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pollution part of the county, so county-level crashes are the same on both days. It would

then appear that pollution has no effect on crashes because variation in pollution did not

correspond to variation in crashes, even though more localized measures of pollution and

crashes would have picked up an effect. Another reason to use instrumental variables is that

tail-pipe emissions include small particulates, and so it is not unreasonable to expect coun-

ties or days with more driving to have elevated particulate matter readings. In addition,

more cars on the road mean more accidents through a scale effect alone (not to mention

through congestion externalities), which would bias our estimates upward. These offsetting

sources of measurement error mean the effect of measurement error on our estimates is a

priori uncertain. By using wind-speed and direction to predict particulate matter readings,

we are limiting the variation in same-day particulate matter exposure to that which varies

randomly with prevailing winds.

We find that a one-unit increase in mean particulate matter exposure is associated with

0.8% more fatal crashes on any given day, relative to the mean. Our finding that fatal crashes

increase by 0.8% is slightly larger than non-IV estimates would imply, suggesting that the

attenuating measurement error effect of fixed monitor locations dominates the simultaneous

determination effect. This effect size is persistent across modeling strategies, the inclusion

of controls, using satellite versus monitor-based data, and even reinterpreting the outcome

variable from count data into another form. For all main results we estimate weighted

Poisson instrumental variables models, but as an additional check we recast the dependent

variable from the count of instances to a dichotomous indicator of whether or not a crash

occurred, measured as a rate per hundred thousand people, or use the inverse hyperbolic sine

transformation to account for the many days with zero occurrences. All models yield similar

conclusions. We also test against a randomized matching procedure as in Hsiang and Jina

(2014) and conclude that our primary results are not an artifact of model-induced bias. In

fact, our estimated effect size is nearly 12-times larger than the mean of results across this
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randomized falsification exercise. Additionally, our results are robust to randomly dropping

5% of observed counties as Broderick et al. (2021) suggest as an additional check when the

amount of observational units is large. In all iterations of this latter robustness check our

results remain statistically significant.

In addition to data on the reading of particulate matter registered at a particular monitor,

the EPA also calculates an Air Quality Index (AQI) value for particulate matter at each

monitor that focuses on health effects that may be experienced within a few hours or days

after breathing polluted air.4 The AQI is a unitless measure of the amount of pollutant that

can be used to relate the pollutant to healthy levels and indicate possible health concerns with

elevated levels. AQI readings range from 0-500 with values above 151 marked as unhealthy,

values between 201-300 very unhealthy, and readings above 301 are deemed hazardous. We

also estimate all models using this metric of particulate matter pollution. Using this measure

of particulate matter exposure, we see that a unit increase in AQI is associated with a 0.2%

increase in crashes.5

We also measure how traffic fatalities respond to differences in particulate matter pollu-

tion. If pollution affects decision-making by making drivers more aggressive, the severity of

crashes may increase in addition to the number of fatal crashes. As there can be multiple

fatalities per crash, fatalities may increase more than the increase in fatal crashes would sug-

gest. Alternatively, if pollution affects decision processes by making drivers more error prone,

that may lead to more single-fatality crashes, corresponding to a 1-for-1 increase in fatalities.

We find that a one-unit increase in mean particulate matter concentration is associated with

a 0.75% increase in traffic fatalities. Or put differently, a one standard deviation increase

in PM2.5 corresponds to a 4.75% increase in motor vehicle fatalities. This effect size is very

similar to the effect on fatal crashes, suggesting that an increase in single-fatality crashes is

4The EPA also computes separate AQI values for other criteria pollutants: PM10, ozone, carbon monox-
ide, sulfur dioxide, and nitrogen dioxide.

5Note that unit changes are not directly comparable between mean PM2.5 readings and the AQI, so a
one-unit increase in PM2.5 would register as more than a one-unit increase in AQI.
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driving our results. Using AQI as our exposure measure we find that each one-unit increase

in AQI is associated with an approximate 0.22% increase in fatalities. These findings are

robust to the same alternative modeling specifications discussed with fatal crashes.

2 Empirical Strategy

2.1 Data Description

2.1.1 Pollution and Weather data

Data on mean particulate matter concentrations and Air Quality Index (AQI) are col-

lected from the Environmental Protection Agency’s daily summaries by monitor (Environ-

mental Protection Agency, 2022). The number of monitors varies over time as more are

added, but from 2010 onward the number of locations is consistent, with over 359,000 indi-

vidual observations yearly spread over 20,000 separate sites. The downside of using observed

values from monitor-based readings is that fewer counties are covered. Only about 20% of

counties have coverage, and daily coverage is not guaranteed for each monitor.6 However,

these monitors are located in more populated areas, which make up much of the observed

car crash data as we discuss below.7 The average daily PM2.5 concentration is 9.78 and

the average AQI is 37.69, both of which correspond to a “good” level of air quality (Table

1). However, there is substantial variation in the amount of observed particulate matter

pollution within each county. On average, each county has about 99 days above the thresh-

old level of good air quality each year with some reaching more than 250 days above the

cutoff for good air quality. The within-county standard deviation is 5.86 on average with

6Some counties have multiple monitors while others have a single monitor. We aggregate to the county-
day-level by averaging across all monitors within a county. The EPA data also includes specific coordinates
for each monitor, so we are also able to construct population-weighted daily averages using the population
from each census tract that a monitor is located in. These two pollution measures are nearly identical, with
a correlation coefficient of 0.984.

7Strategic misreporting of pollution data has also been documented by Zou (2021) and Mu et al. (n.d.).
Our IV strategy helps account for this source of measurement error.
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a maximum within-county standard deviation of 17.0. For AQI, the average within-county

standard deviation is 17.7 with a maximum within-county standard deviation of 37.3.

In a robustness specification, we also make use of satellite-based gridded atmospheric data

that has been coupled with the EPA’s monitor-based data to provide a more comprehensive

and complete series of particulate matter data. The advantage of using these gridded averages

is that there are no missing values and wider spatial coverage, the disadvantage is that these

data are available over a shorter time period (from 2001-2016).8,9 Moreover, we now swap

the issue of potential measurement error from the monitor-based data with the potential for

calibration error with the satellite-based modeled data. Comparing between the monitor-

based data and the satellite-based data we find a root mean squared difference of 1.38 units

and a correlation coefficient of 0.914 between the two data sources. All estimates using these

data are consistent with the monitor-based data.10

We couple our particulate pollution information with wind speed and direction data

from the North American Regional Reanalysis daily reanalysis data.11 Wind conditions are

reported on a 32 by 32 kilometer grid for the entire United States which we aggregate to the

county-level. From these data, we calculate the mean wind speed and wind direction which

are reported in degrees around a wind rose. For the purposes of the first stage of our IV

model we construct dichotomous indicator variables indicating whether or not the prevailing

wind fell within three bin ranges: 0-90 degrees (North-Northeast), 90-180 (Southeast-South),

and 180-270 (South-Southwest). The excluded reference bin is 270-360 (West-Northwest).

Our IV strategy makes use of both wind direction and wind speed to predict observed

particulate matter readings by location. As an illustrative example, consider a county that

is located on the edge of a large body of water like a lake, river or the ocean. If the prevailing

8This is the EPA’s ‘Downscaler Model’ which has information on particulate matter concentrations by
census tract and by county.

9To be consistent with our specifications estimated using the EPA monitor data, we start our sample for
the satellite specifications in April 2005, post-Clean-Air-Act enforcement.

10These estimates are shown in Columns 5 and 6 of Table 2, and in Table 4.
11These data are collected using the climateR package by Johnson (2022).
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wind direction comes from the waterfront, then observed pollution will likely be low because

there is no polluting activity blowing from the water. This pollution-clearing wind will have a

bigger effect as wind speeds coming from the waterfront increase. Alternatively, suppose that

a neighboring county produces particulate matter pollution through industrial activity, power

generation, or high car density. When the wind blows from the direction of the polluting

county we can expect higher particulate matter concentrations. These exogenous changes in

both wind speed and wind direction allow us to control for the simultaneous determination

issue – more cars result in more accidents and more cars result in more particulate pollution,

but we are interested in determining if more pollution causes more accidents.

We also use temperature and precipitation data from the NARR reanalysis data. There

is a meteorological relationship between temperature and wind speeds where, all else equal,

higher temperatures result in lower wind speeds. For example, this is why wind turbines are

more productive and produce more electricity overnight than in the heat of an afternoon. In

our first-stage regressions we control for deciles of maximum daily temperature, measured

in degrees Fahrenheit, and precipitation measured in inches. In this stage we allow for

a broad range of temperature differences so that we can take full advantage of the effect

that exogenous weather conditions have on particulate matter concentrations. Moreover,

we use decile bins to allow for heterogeneity in how heat affects particulate matter so that

we are not imposing a linear relationship between the two variables. In our second-stage

regressions we control for temperature effects using dichotomous indicator variables for two

different degree bin ranges. We control for days when the maximum temperature is below

freezing to account for icy conditions, and control for temperatures that are above 85◦ F

to account for hot days. Including an indicator for hot days is an important control as

heat can also affect temperament and may contribute to feelings of anger that could also

be associated with car collisions (Baylis, 2020; Colmer and Doleac, 2022). The rationale for

controlling for broader temperature indicators in the first-stage and not in the second stage
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is that this exogenous variation is highly related to wind speed and hence particulate matter

concentrations. Choosing to include temperature in a more flexible form after controlling for

its effect in the first stage has the unintended effect of re-introducing variation in particulate

matter concentrations by way of a proxy variable after just controlling for variation that is due

to meteorological conditions. We also control for precipitation in deciles since precipitation

affects road quality and visibility conditions.

2.1.2 FARS data

Data on fatal motor vehicle crashes and motor vehicle fatalities come from the Fatality

Analysis Reporting System, which contains records of every fatal crash occurring on public

roadways in the U.S. (National Highway Traffic Safety Administration, 2022) We aggregate

crash and fatality data to the county-day level, and we use details about the year, month,

and day of the week of the crashes. On average, there is slightly more than one crash and

one fatality in a county every three days (Table 1).

2.1.3 Control variables

In our main specifications we control for alcohol and marijuana policies. Data on alcohol

policies come from the Alcohol Policy Information System, a database maintained by the Na-

tional Institute on Alcohol Abuse and Alcoholism (National Institute on Alcohol Abuse and

Alcoholism, 2022). We control for the state’s blood alcohol concentration (BAC) limit for

operating a motor vehicle. Information on marijuana policies comes from ProCon.org, a non-

partisan organization that compiles information on controversial social issues (Procon.org,

2022a,b). We control for the legality of recreational and medical marijuana.

2.2 Econometric Specification

We estimate both Poisson and instrumental variables Poisson specifications. Our pre-
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ferred specification is the IV-Poisson model, as our outcomes of interest are count variables

that are heavily skewed towards 0: 75% of days have 0 crashes and 0 fatalities. We estimate

the following Poisson equation:

E[Fcymd| AP, X] = exp{α + β · APcymd +X′
cymd · θ + δcm + δmy + δdow} (1)

Fcymd denotes the number of fatalities or fatal car crashes in county c on day d in monthm

and year y. APcymd is the measure of air pollution for county c on day d in month m and year

y. Xcymd represents a vector of time-varying control variables: indicators for the maximum

temperature being below freezing or above 85◦ F, indicators for precipitation in deciles, the

blood alcohol concentration limit for operating a motor vehicle, and indicators for whether

medical and recreational marijuana laws have been implemented. δcm, δmy, and δdow represent

county-by-month, month-year, and day-of-week fixed effects. Note that the county-by-month

fixed effects absorb standard control variables like county-level demographic characteristics

and the monthly unemployment rate. Standard errors are clustered at the county level. Our

primary specification weights the regression by county population, so the estimated effect is

interpretable as the effect of air pollution on the average person, as opposed to the average

county.12

Our primary sample period runs from April 2005 to December 2019. We start in April

2005, when the new Clean Air Act standards began to be enforced, so that our variation

in pollution exposure would come primarily from weather events, such as wildfires (only

in the non-IV specifications) or changes in wind speed and direction, as opposed to pre-

existing differences in air pollution. We end in December 2019 so as not to coincide with the

COVID-19 pandemic, which led to major changes in driving frequency and behaviors.

12We have also considered aggregating by commuting zone. Commuting zones represent labor market
areas, and are typically larger and may be made up of several counties. We find similar to slightly larger
effect sizes when we use this larger aggregation, though we prefer the county specification since there is
better precision connecting to local pollution conditions.
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Ordinary Poisson regressions of air pollution on fatal crashes may suffer from omitted

variable bias as noted earlier. To address this concern, we instrument for air pollution

levels using wind direction and velocity, which is a common instrument in the air pollution

literature (Deryugina et al., 2019; Persico and Marcotte, 2022).

We estimate the following first-stage equation for the two-stage least squares regression:

APcymd = α + β · windvelcymd + γc · winddircymd + ρ ·Wcymd + δcm + δmy + εcymd (2)

APcymd denotes the air pollution measure for county c on day d in month m and year y.

windvelcymd represents the wind velocity measurement. γc · winddircymd represents county

fixed effects interacted with indicators for wind direction (split into four bins). Wcymd rep-

resents our weather variables: deciles of maximum daily temperature and precipitation. δcm

and δmy denote county-by-month and month-year fixed effects. Standard errors are clustered

at the county level. The first-stage regression is weighted by the county population.

Using the predicted measure of air pollution in Equation 2, we then estimate the second-

stage effect of air pollution on fatal motor vehicle incidents using the following Poisson

specification:

E[Fcymd| AP, X] = exp{α + β · ÂP cymd +X′
cymd · θ + δcm + δmy + δdow} (3)

ÂP cymd is the predicted measure of air pollution from Equation 2. The controls for

temperature are indicators for the maximum temperature being below freezing or above 85◦

F. All other variables are the same as those described in Equation 1.
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3 Results

3.1 Poisson

Our Poisson results are in Panel A of Table 2. The results in Columns 1 and 2 use the

PM2.5 concentration as the measure of air pollution, while those in Columns 3 and 4 use the

air quality index (AQI). Columns 1 and 3 include fixed effects but no time-varying controls.

A one µg/m3 increase in PM2.5 is associated with a daily increase of 0.0004 fatal crashes.

This effect is small and not statistically significant, representing a 0.12% increase. Including

time-varying controls attenuates the estimate: a one µg/m3 increase in PM2.5 is associated

with an increase of 0.0002 fatal crashes per day, which is not significant.

Using the air quality index as the measure of pollution yields similar results. In our

fixed-effects-only specification (Column 3), a one-unit increase in AQI corresponds to a

0.0002 increase in daily fatal crashes. This effect is significant at the 5% level and represents

an increase of 0.06%. The results are slightly smaller when we include time-varying controls

(Column 4) and no longer statistically significant.

The effect of air pollution on motor vehicle fatalities is quantitatively and qualitatively

similar to the effect on fatal crashes. In the specification with controls (Column 2), a

one µg/m3 increase in PM2.5 leads to an increase of 0.0004 fatalities per day, which is not

significant. A one-unit increase in the AQI (Column 4) leads to an increase of 0.0002 fatalities

per day, which is marginally significant.

3.2 Instrumental Variables

Panel B of Table 2 shows the results from our instrumental variables specification. The

F-statistic for the first-stage regression of PM2.5 concentration and wind velocity is 562.44,

and the F-statistic for the first-stage regression of the air quality index and wind velocity is

829.05, both well above the threshold for valid inference (Lee et al., 2022). Column 1 includes
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fixed effects but no time-varying controls. A one µg/m3 increase in predicted PM2.5 leads to

an increase of 0.0037 fatal crashes per day. This effect is statistically significant at the 1%

level and represents a 1.00% increase in the number of daily crashes. The results are slightly

attenuated when we add in controls (Column 2, our preferred specification): a one µg/m3

increase in the predicted PM2.5 concentration leads to an increase of 0.0030 fatal crashes per

day. This effect is again significant at the 1% level and represents a 0.80% increase. The

results using AQI as the measure of pollution are attenuated but qualitatively similar. The

attenuation is not surprising given that the air quality index ranges from 0 to 500 with a

value below 50 considered “good” air quality, while the corresponding PM2.5 concentration

for “good” air quality is 12 µg/m3. A one-unit increase in AQI is much smaller than a 1-unit

increase in PM2.5. In the specification with only fixed effects, a one-unit increase in predicted

AQI leads to an increase of 0.0011 fatal crashes per day, a 0.30% increase that is statistically

significant at the 1% level (Column 3). The results are virtually identical when we include

controls (Column 4).

The results for fatalities mirror those for crashes, although effects are statistically sig-

nificant at the 5% level instead of the 1% level. In the version with controls (Column 2), a

one µg/m3 increase in predicted PM2.5 leads to a 0.75% increase in fatalities. For context, a

one standard deviation increase in PM2.5 corresponds to a 4.75% increase in motor vehicle

fatalities. Using AQI as the measure of pollution yields a 0.22% increase in fatalities.

3.3 Robustness Checks

Our results are robust when we switch from IV-Poisson to estimating IV-OLS using a

variety of outcome specifications and all are statistically significant, as shown in Table 3. In

Column 1 we estimate an Ordinary Least Squares specification with the count of crashes or

fatalities as the outcome. Column 2 presents results for a linear probability model where

the outcome is whether there were any crashes or fatalities on a given day. In Column 3,
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we estimate a model using the crash and fatality rate per 100,000 population. Column 4

transforms the outcome variable using the inverse hyperbolic sine. In column 5, the Poisson

regression results are unweighted.

We find that a one µg/m3 increase in predicted PM2.5 leads to an increase of 0.0020

crashes and 0.0019 fatalities per day (Column 1). These effects are significant at the 1 and

5% level respectively and represent increases of 0.54% and 0.49% relative to the mean. A

unit increase in PM2.5 also leads to a 0.14 percentage point increase in the probability of any

crashes or fatalities, a 0.55% increase that is significant at the 1% level (Column 2). When

expressed as a rate per 100,000 people (Column 3) we estimate a 0.87% and 0.78% increase,

for each outcome respectively. All estimates for this model are statistically significant at the

1% level. Results are also similar using the inverse hyperbolic sine transformation (Column

4). We present these effect sizes as marginal effects on the original scale (count of crashes or

fatalities), following Norton (2022). A one µg/m3 increase in PM2.5 leads to an increase of

0.0016 crashes and 0.0017 fatalities (0.44% and 0.42%), which are both significant at the 1%

level. The unweighted Poisson regressions yield slightly smaller effect sizes but slightly larger

percent effects than the weighted Poisson regressions (Column 5). A unit increase in PM2.5

leads to an increase of 0.0018 crashes or fatalities per day. These effects are statistically

significant at the 1% level and correspond to a 1.84% and 1.66% increase over the mean.

As a further check that we are observing the true effect of fine particulate matter pollution

on crashes as opposed to a spurious correlation, we test for heterogeneous effects by the level

of the air quality index. Higher AQI should correspond to a larger effect on crashes and

fatalities. We create indicator variables for whether the daily AQI was between 26 and 50,

51 to 100, or above 100 (AQI of 25 or less is the omitted group) and re-estimate Equation

3 using these indicator variables instead of the level of AQI.13 For these regressions, we use

actual AQI, as opposed to our predicted AQI instrument, as predicted values of AQI are all

13We do not further parse the highest AQI bin due to a lack of statistical power: less than 1% of the
sample records an AQI greater than 100, and less than 0.1% records an AQI greater than 150.
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less than 50, providing insufficient variation. In our sample period, the majority of high-

AQI days (101 or higher) occur due to wildfires. We exclude county-by-month fixed effects

from this estimation because wildfires are concentrated in certain counties and months.14

We replace them with county fixed effects, the monthly unemployment rate from the BLS

(Bureau of Labor Statistics, 2022), and annual demographic variables from the Census (U.S.

Census Bureau, 2022): the fraction of the population that is Black, Hispanic, other (non-

white) races, male and between the ages of 15 and 24, male and other ages, and female and

between the ages of 15 and 24.15 Our results, in Table 5, confirm that higher levels of PM2.5,

as measured by AQI, correspond to more crashes and fatalities. On days where the air quality

index is between 26 and 50, there are an additional 0.0102 crashes and 0.01 fatalities relative

to days where the AQI is 25 or less. These effects are significant at the 1% and 5% level,

respectively. On days when the AQI is between 51 and 100 (moderate air quality), there are

0.0126 additional crashes and 0.0138 additional fatalities. These results are significant at the

1% level. On days when the AQI is above 100 (ranging from unhealthy for sensitive groups

to hazardous), there are an additional 0.0202 crashes and 0.0180 fatalities. These effects are

significant at the 5% level. This treatment effect heterogeneity is consistent with more air

pollution having worse cognitive effects, translating into more crashes and fatalities.

We also test the hypothesis that contemporaneous same-day particulate matter concen-

trations are what drive our results rather than cumulative exposure. If prior days’ exposure

matters, then we can rule out the same day effects that other authors have found (Arch-

smith et al., 2018; Persico and Marcotte, 2022). Figure 3 shows plotted coefficients from our

fully-specified model with all controls while also including lags of particulate matter concen-

tration over the prior week. Exposure over the prior 24 hours increases both crashes and

fatalities in a statistically meaningful way, but the effect of prior days’ concentrations cannot

14Large wildfires mostly occur in the late summer and fall in Western and Mountain West states.
15Omitted demographic categories are the fraction of the population that is white and the fraction of the

population that is female and other ages.
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be distinguished from zero. These results support the notion that immediate exposure levels

matter, and that the mechanism behind our findings are increases in mistakes and higher

aggression levels as prior research has shown.

Our primary results focus on the period after the more stringent Clean Air Act standards

were enforced (after April 2005), but as a robustness check we include data from earlier years

in the appendix. There are fewer pollution monitors in these years, so for some counties we

are able to add observations while for others we cannot. The results, in Table A.1, are

attenuated but qualitatively similar. When we instrument for pollution using wind direction

and velocity, increases in PM2.5 lead to additional car crashes and fatalities.

Our analysis primarily uses monitor-based pollution readings, though an alternative to

this is to use satellite-informed modeled data. The benefit to these data is that they offer

broader spatial coverage with no missing readings, but the downside is that we substitute

potential measurement error with model calibration error and have a shorter time sample.

Nevertheless, we re-estimate the same model specification shown in Columns 1 through 4

of Table 2 using the satellite-based PM2.5 readings and come to the same conclusions as

before. Panel B, Column 6 of Table 2 shows that a 1-unit increase in PM2.5 is associated

with a 1.18 and 1.17 percent increase in fatal crashes and fatalities, respectively. Table 4

estimates alternative functional form specifications using the satellite data (akin to Table 3’s

specifications using the EPA monitor data), and shows results that are quantitatively very

similar to both the satellite results in Panel B, Column 6 of Table 2 and to the functional

form specification checks using the EPA monitor data in Table 3.

Lastly, we run two randomized falsification exercises to determine if variation in particu-

late matter is truly what is driving our result that both crashes and fatalities increase with

higher pollution levels. For the first test we impose random matching to connect the data

on crashes and fatalities from one county with the particulate matter exposure and control

variables from a different county. For example, in one run of the randomization exercise
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the crash data from San Francisco County in California may be connected with pollution,

weather, and other controls from Tarrant County in Texas which is part of the DFW metro-

plex. We repeat this random matching exercise 250 times and estimate the model specified

in Equation 3 for each random draw for both crashes and fatalities.16 This test is able to

determine if there is model-induced bias (Hsiang and Jina, 2014). That is, is it possible

to recover our estimate of the effect of particulate matter exposure on crashes or fatalities

when the observations of the outcome variable come from a different city? Figure 2 plots

the histogram of estimated coefficients with randomized matching as well as our estimate

using non-randomized data from Table 2 shown by a red vertical line. Here, it is easy to see

that our estimated coefficient for the effect of pollution on car crashes and fatalities is not

driven by chance or model-driven bias. The mean effect size among the randomized matches

is 0.00019 for crashes, and 0.00022 for fatalities, approximately 12 times smaller than the

non-randomized estimate.17 Next, we test whether or not some observations are overly in-

fluential in determining our main results. With hundreds of counties it is not feasible to

manually check the influence of all possible small subsets of counties, so we rely on a method

proposed in Broderick et al. (2021). Broderick et al. (2021) have shown that sensitivity of

estimates are due to the signal-to-noise ratio and that many results from the papers that

they surveyed are not robust to dropping even only 1% of the observations. For this test,

we randomly assign an identification number to each county and drop approximately 5% of

the sample. We run 250 iterations of the random dropping protocol and estimate the model

specified in Equation 3. Appendix Figure A.1 plots a histogram of the estimated effect size

for crashes and fatalities with randomly dropped subsamples. The figure clearly shows that

our estimates are not sensitive to removing observations from the sample. For crashes, we

find that the mean effect size across iterations is 0.00236.18 In fact, all of the 250 iterations

16A total of 500 random matches across both outcome variables.
17We also compute an average z-statistic of approximately 0.51 and 0.55 for these variables, respectively.
18We find a mean z-statistic of 2.89.
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are statistically significant at at least the 10% level. For fatalities, we find that the mean

effect size across iterations is 0.00235.19 These are similarly all statistically significant at the

10% level or more. We conclude from these randomization tests that our result is not due

to model-induced bias, nor is it sensitive to removing particular counties.

4 Conclusions and Policy Discussion

Particulate matter pollution has been linked to numerous negative health outcomes,

and importantly, has also been linked to decreased cognitive function, increased errors in

decision-making, and reductions in pro-social behavior. In this paper, we focus on motor

vehicle crashes and fatalities as these are a channel through which deteriorated cognitive and

aggressive effects could play a very harmful role. We find robust evidence that particulate

matter pollution leads to increases in fatal crashes and fatalities. To identify causal effects of

pollution on fatal motor vehicle incidents, we make use of exogenous shifts in wind direction

and velocity to pin down particulate matter pollution due to natural variation and not shifts

in the volume of drivers. In addition to finding detrimental effects of particulate matter

exposure across different modeling strategies, we are able to rule out long-run effects of

exposure. We find that contemporaneous exposure over the prior 24 hours increases both

motor vehicle crashes and fatalities, and do not find that pollution exposure over the prior

week has any effect on fatal motor vehicle incidents. Further, the effect of air pollution is

nonlinear, as higher levels of PM2.5 (as measured by AQI) lead to greater increases in crashes

and fatalities. These results support the hypothesis that the mechanism driving our results

is real-time cognitive effects of particulate matter pollution.

Crashes and fatalities pose both significant economic costs to the people involved and the

communities these crashes occur in. Currently, the EPA assumes a value of $7.4 million as

the value of a statistical life, and this number takes into account the effects that pollution has

19We find a mean z-statistic of 2.5.
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in exacerbating chronic health conditions like heart and lung disease. Our results indicate

that additional costs should be considered as particulate matter pollution leads to both

more crashes and more fatalities. When we translate our results into fatalities per hundred

thousand people, we find that a 10 µg/m3 increase in daily mean PM2.5 concentration is

associated with a 0.002 increase in fatalities per hundred thousand people. Put differently,

an additional traffic fatality occurs with only about 66 days of higher pollution concentrations

in a moderately sized city of 750,000 people.20

Increases in air pollution have economically meaningful effects on fatal motor vehicle

incidents. A one standard deviation increase in PM2.5 corresponds to a 4.75% increase in

motor vehicle fatalities. Consequently, an across-the-board 1 standard deviation reduction

in fine particulate matter pollution would have prevented over 1,700 motor vehicle fatalities

in 2019. Using the EPA’s value of a statistical life, the pollution abatement efforts required

would yield benefits of $12.8 billion per year on the basis of fewer motor vehicle fatalities

alone, not even counting reductions in other causes of death. In January of 2023 the EPA

proposed lowering PM 2.5 standards from their current levels. If finalized, the new standard

would be set at 9 micrograms per cubic meter. Our research suggests that this would be a

prudent decision.

20The 51st through 100th largest metropolitan areas in the United States have between approximately
500,000 and 1 million people.

23



References

Ailshire, J. A. and Crimmins, E. M. (2014). Fine Particulate Matter Air Pollution and Cog-
nitive Function Among Older US Adults, American Journal of Epidemiology 180(4): 359–
366.
URL: https://doi.org/10.1093/aje/kwu155

Anderson, J. O., Thundiyil, J. G. and Stolbach, A. (2012). Clearing the Air: A Review
of the Effects of Particulate Matter Air Pollution on Human Health, Journal of Medical
Toxicology 8(2): 166–175.
URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3550231/

Archsmith, J., Heyes, A. and Saberian, S. (2018). Air Quality and Error Quantity: Pollution
and Performance in a High-Skilled, Quality-Focused Occupation, Journal of the Associa-
tion of Environmental and Resource Economists 5(4): 827–863.
URL: https://www.journals.uchicago.edu/doi/10.1086/698728

Baylis, P. (2020). Temperature and Temperament: Evidence from Twitter, Journal of Public
Economics 184: 104161.
URL: https://www.sciencedirect.com/science/article/pii/S0047272720300256

Bondy, M., Roth, S. and Sager, L. (2020). Crime Is in the Air: The Contemporaneous Re-
lationship between Air Pollution and Crime, Journal of the Association of Environmental
and Resource Economists 7(3): 555–585. Publisher: The University of Chicago Press.
URL: https://www.journals.uchicago.edu/doi/10.1086/707127

Borgschulte, M., Molitor, D. and Zou, E. (2022). Air Pollution and the Labor Market:
Evidence from Wildfire Smoke.
URL: https://www.nber.org/papers/w29952

Broderick, T., Giordano, R. and Meager, R. (2021). An Automatic Finite-Sample Robustness
Metric: When Can Dropping a Little Data Make a Big Difference? arXiv:2011.14999 [econ,
stat].
URL: http://arxiv.org/abs/2011.14999

Bureau of Labor Statistics (2022). Local Area Unemployment Statistics.
URL: https://download.bls.gov/pub/time.series/la/

Burke, M., Driscoll, A., Heft-Neal, S., Xue, J., Burney, J. and Wara, M. (2021). The
Changing Risk and Burden of Wildfire in the United States, Proceedings of the National
Academy of Sciences 118(2).
URL: https://www.pnas.org/content/118/2/e2011048118

Burkhardt, J., Bayham, J., Wilson, A., Carter, E., Berman, J. D., O’Dell, K., Ford, B.,
Fischer, E. V. and Pierce, J. R. (2019). The Effect of Pollution on Crime: Evidence
from Data on Particulate Matter and Ozone, Journal of Environmental Economics and

24



Management 98: 102267.
URL: https://www.sciencedirect.com/science/article/pii/S0095069619301901

Burton, A. M. (2021). Do Uber and Lyft Reduce Drunk-Driving Fatalities?, Working paper.
URL: https://annemburton.com/pages/working papers/Burton drunk-driving paper.pdf

Carpenter, C. and Dobkin, C. (2017). The Minimum Legal Drinking Age and Morbidity in
the United States, Review of Economics and Statistics 99: 95–104.
URL: https://direct.mit.edu/rest/article-abstract/99/1/95/58371/The-Minimum-Legal-
Drinking-Age-and-Morbidity-in?redirectedFrom=fulltext

Carpenter, C., Dobkin, C. and Warman, C. (2016). The Mechanisms of Alcohol Control,
Journal of Human Resources 51: 328–356.
URL: http://jhr.uwpress.org/content/51/2/328.short

Colmer, J. and Doleac, J. L. (2022). Access to Guns in the Heat of the Moment: More
Restrictive Gun Laws Mitigate the Effect of Temperature on Violence, SSRN Electronic
Journal .
URL: https://www.ssrn.com/abstract=4195573

Cory-Slechta, D. A., Merrill, A. and Sobolewski, M. (2023). Air Pollution–Related Neurotox-
icity Across the Life Span, Annual Review of Pharmacology and Toxicology 63(1): 143–163.
eprint: https://doi.org/10.1146/annurev-pharmtox-051921-020812.
URL: https://doi.org/10.1146/annurev-pharmtox-051921-020812

Costa, L. G., Cole, T. B., Dao, K., Chang, Y.-C., Coburn, J. and Garrick, J. M. (2020).
Effects of air pollution on the nervous system and its possible role in neurodevelopmental
and neurodegenerative disorders, Pharmacology & Therapeutics 210: 107523.
URL: https://www.sciencedirect.com/science/article/pii/S0163725820300516

Currie, J., Voorheis, J. and Walker, R. (2022). What Caused Racial Disparities in Particulate
Exposure to Fall? New Evidence from the Clean Air Act and Satellite-Based Measures of
Air Quality, American Economic Review .
URL: https://www.aeaweb.org/articles?id=10.1257/aer.20191957

Dahl, R. E. (2008). Biological, Developmental, and Neurobehavioral Factors Relevant
to Adolescent Driving Risks, American Journal of Preventive Medicine 35(3, Supple-
ment): S278–S284.
URL: https://www.sciencedirect.com/science/article/pii/S0749379708005175

Deryugina, T., Heutel, G., Miller, N. H., Molitor, D. and Reif, J. (2019). The Mortality
and Medical Costs of Air Pollution: Evidence from Changes in Wind Direction, American
Economic Review 109(12): 4178–4219.

Deryugina, T. and Reif, J. (2023). The Long-Run Effect of Air Pollution on Survival,Working
paper.

25



Deza, M. and Litwok, D. (2016). Do Nighttime Driving Restrictions Reduce Criminal Par-
ticipation Among Teenagers? Evidence from the Graduated Driver Licensing, Journal of
Policy Analysis and Management 35(2): 306–332.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/pam.21893

Dills, A. K. and Mulholland, S. (2018). Ride-Sharing, Fatal Crashes, and Crime, Southern
Economic Journal 84: 965–991.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/soej.12255

Environmental Protection Agency (2022). Environmental Protection Agency Site Data.
URL: https://aqs.epa.gov/aqsweb/airdata/download files.html

Fowlie, M., Rubin, E. and Walker, R. (2019). Bringing Satellite-Based Air Quality Estimates
Down to Earth, AEA Papers and Proceedings 109: 283–288.

Freeman, D. G. (2007). Drunk Driving Legislation and Traffic Fatalities: New Evidence on
BAC 08 Laws, Contemporary Economic Policy 25: 293–308.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1465-7287.2007.00039.x

Gawryluk, J. R., Palombo, D. J., Curran, J., Parker, A. and Carlsten, C. (2023). Brief diesel
exhaust exposure acutely impairs functional brain connectivity in humans: a randomized
controlled crossover study, Environmental Health 22(1): 7.
URL: https://doi.org/10.1186/s12940-023-00961-4

Giedd, J. N. (2008). The Teen Brain: Insights from Neuroimaging, Journal of Adolescent
Health 42(4): 335–343.
URL: https://www.sciencedirect.com/science/article/pii/S1054139X0800075X

Green, C. and Krehic, L. (2022). An Extra Hour Wasted? Bar Closing Hours and Traffic
Accidents in Norway, Health Economics 31: 1752–1769.
URL: https://onlinelibrary.wiley.com/doi/full/10.1002/hec.4550

Hahad, O., Lelieveld, J., Birklein, F., Lieb, K., Daiber, A. and Münzel, T. (2020). Ambi-
ent Air Pollution Increases the Risk of Cerebrovascular and Neuropsychiatric Disorders
through Induction of Inflammation and Oxidative Stress, International Journal of Molec-
ular Sciences 21(12): 4306. Number: 12 Publisher: Multidisciplinary Digital Publishing
Institute.
URL: https://www.mdpi.com/1422-0067/21/12/4306

Hansen, B. (2015). Punishment and Deterrence: Evidence from Drunk Driving, American
Economic Review 105: 1581–1617.
URL: https://www.aeaweb.org/articles?id=10.1257/aer.20130189

Herrnstadt, E., Heyes, A., Muehlegger, E. and Saberian, S. (2021). Air Pollution and Crimi-
nal Activity: Microgeographic Evidence from Chicago, American Economic Journal: Ap-
plied Economics 13(4): 70–100.
URL: https://www.aeaweb.org/articles?id=10.1257/app.20190091

26



Hsiang, S. M. and Jina, A. S. (2014). The Causal Effect of Environmental Catastrophe on
Long-Run Economic Growth: Evidence From 6,700 Cyclones.
URL: https://www.nber.org/papers/w20352

Huh, J. and Reif, J. (2021). Teenage Driving, Mortality, and Risky Behaviors, American
Economic Review: Insights 3(4): 523–539.
URL: https://www.aeaweb.org/articles?id=10.1257/aeri.20200653

Johnson, M. (2022). climateR. original-date: 2018-11-22T00:07:16Z.
URL: https://github.com/mikejohnson51/climateR

Jones, B. A. (2022). Dust Storms and Violent Crime, Journal of Environmental Economics
and Management 111: 102590.
URL: https://www.sciencedirect.com/science/article/pii/S0095069621001340

Komisarow, S. and Pakhtigian, E. L. (2022). Are Power Plant Closures A Breath of Fresh
Air? Local Air Quality and School Absences, Journal of Environmental Economics and
Management 112: 102569.
URL: https://www.sciencedirect.com/science/article/pii/S0095069621001182

Künn, S., Palacios, J. and Pestel, N. (2019). Indoor Air Quality and Cognitive Performance,
IZA Working Paper .
URL: https://www.ssrn.com/abstract=3460848

Lee, D. S., McCrary, J., Moreira, M. J. and Porter, J. (2022). Valid t-Ratio Inference for
IV, American Economic Review 112: 3262–3290.
URL: https://www.aeaweb.org/articles?id=10.1257/aer.20211063

Levitt, S. D. and Porter, J. (2001). How Dangerous Are Drinking Drivers?, Journal of
Political Economy 109(6): 1155–1394.
URL: https://www.journals.uchicago.edu/doi/10.1086/323281

Lovenheim, M. F. and Steefel, D. P. (2011). Do Blue Laws Save Lives? The Effect of
Sunday Alcohol Sales Bans on Fatal Vehicle Accidents, Journal of Policy Analysis and
Management 30: 798–820.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/pam.20598

Mu, Y., Rubin, E. A. and Zou, E. (n.d.). What’s Missing in Environmental (Self-)Monitoring:
Evidence from Strategic Shutdowns of Pollution Monitors.

National Highway Traffic Safety Administration (2022). Fatality Analysis Reporting System.
URL: https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/FARS/

National Institute on Alcohol Abuse and Alcoholism (2022). Alcohol Policy Information
System.
URL: https://alcoholpolicy.niaaa.nih.gov/apis-policy-topics

27



Norton, E. C. (2022). The Inverse Hyperbolic Sine Transformation and Retransformed
Marginal Effects, The Stata Journal 22: 702–712.
URL: https://journals.sagepub.com/doi/10.1177/1536867X221124553

Persico, C. L. and Venator, J. (2019). The Effects of Local Industrial Pollution on Students
and Schools, Journal of Human Resources p. 0518.
URL: http://jhr.uwpress.org/content/early/2019/08/02/jhr.56.2.0518-9511R2

Persico, C. and Marcotte, D. E. (2022). Air Quality and Suicide, Working Paper 30626,
National Bureau of Economic Research.
URL: http://www.nber.org/papers/w30626

Pham, L. and Roach, T. (2023). Particulate pollution and learning, Economics of Education
Review 92: 102344.
URL: https://www.sciencedirect.com/science/article/pii/S0272775722001170

Procon.org (2022a). State-by-State Medical Marijuana Laws.
URL: https://medicalmarijuana.procon.org/legal-medical-marijuana-states-and-dc/

Procon.org (2022b). State-by-State Recreational Marijuana Laws.
URL: https://marijuana.procon.org/legal-recreational-marijuana-states-and-dc/

Ranft, U., Schikowski, T., Sugiri, D., Krutmann, J. and Krämer, U. (2009). Long-term
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5 Tables

Table 1: Summary Statistics

(1)
PM2.5 Concentration (µ/m3) 9.7764

(6.3377)
Air Quality Index 37.6947

(18.8550)
Number of Fatal Crashes 0.3688

(0.7708)
Number of Fatalities 0.3951

(0.8500)
Maximum Daily Temperature (Degrees F) 69.5074

(18.9528)
Daily Precipitation (Inches) 0.1017

(0.2906)
Blood Alcohol Concentration Limit 0.0800

(0.0011)
Medical Marijuana Legal 0.4938

(0.5000)
Recreational Marijuana Legal 0.0975

(0.2966)
Unemployment Rate 0.0608

(0.0276)
Fraction Black 0.1427

(0.1279)
Fraction Hispanic 0.2188

(0.1745)
Fraction Other Races 0.0965

(0.0726)
Fraction White 0.5420

(0.2070)
Fraction Male Other Ages 0.4192

(0.0128)
Fraction Male 15-24 0.0709

(0.0114)
Fraction Female 15-24 0.0684

(0.0110)
Fraction Female Other Ages 0.4414

(0.0145)
Observations 1,801,724

Note: Data are from the Fatality Analysis Reporting System, EPA Air Quality Data, Alcohol
Policy Information System, ProCon.org, Bureau of Labor Statistics, and U.S. Census Bureau for
2005-2019. Each observation is a county day. Statistics are weighted by the county population.
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Table 2: The Effect of Air Pollution on Fatal Crashes and Fatalities

EPA EPA EPA EPA CDC CDC
PM2.5 PM2.5 AQI AQI PM2.5 PM2.5

(1) (2) (3) (4) (5) (6)
Panel A: Poisson Results
Fatal Crashes 0.0004 0.0002 0.0002∗∗ 0.0001 0.0005 0.0002

(0.0003) (0.0003) (0.0001) (0.0001) (0.0004) (0.0004)
Mean of Crashes 0.3688 0.3688 0.3699 0.3699 0.2844 0.2844
% Effect 0.12 0.05 0.06 0.04 0.17 0.09
N 1,115,019 1,115,019 1,103,467 1,103,467 2,147,434 2,147,434

Fatalities 0.0006∗ 0.0004 0.0003∗∗ 0.0002∗ 0.0007 0.0004
(0.0003) (0.0003) (0.0001) (0.0001) (0.0005) (0.0005)

Mean of Fatalities 0.3951 0.3951 0.3963 0.3963 0.3060 0.3060
% Effect 0.14 0.09 0.07 0.05 0.21 0.14
N 1,115,019 1,115,019 1,103,467 1,103,467 2,147,434 2,147,434

Panel B: Instrumental Variables Results
Fatal Crashes 0.0037∗∗∗ 0.0030∗∗∗ 0.0011∗∗∗ 0.0009∗∗∗ 0.0036∗∗∗ 0.0034∗∗∗

(0.0013) (0.0011) (0.0004) (0.0003) (0.0011) (0.0011)
Mean of Crashes 0.3688 0.3688 0.3699 0.3699 0.2844 0.2844
% Effect 1.00 0.80 0.30 0.24 1.27 1.18
N 1,115,019 1,115,019 1,103,467 1,103,467 2,147,434 2,146,552

Fatalities 0.0037∗∗ 0.0030∗∗ 0.0011∗∗ 0.0009∗∗ 0.0038∗∗∗ 0.0036∗∗∗

(0.0015) (0.0013) (0.0004) (0.0004) (0.0011) (0.0011)
Mean of Fatalities 0.3951 0.3951 0.3963 0.3963 0.3060 0.3060
% Effect 0.93 0.75 0.27 0.22 1.24 1.17
N 1,115,019 1,115,019 1,103,467 1,103,467 2,147,434 2,146,552

County FE
County-by-Month FE X X X X X X
Month-Year FE X X X X X X
Day-of-week FE X X X X X X
Weather X X X
Demographics
Alcohol/marijuana laws X X X

Note: Results in Panel A from the estimation specified in Equation 1 and results in Panel B from
the estimation specified in Equation 3. The column header denotes the measure of air pollution and
the row header denotes the outcome variable. Each coefficient is from a separate regression. The
F-statistics for the first-stage regressions are 562.44 for predicted PM2.5 using the EPA monitor
data (Panel B, Columns 1-2), 829.05 for predicted AQI using the EPA monitor data (Panel B,
Columns 3-4), and 1043.33 for predicted PM2.5 using the CDC satellite data (Panel B, Columns
5-6). Outcome variables are from the Fatality Analysis Reporting System and pollution data are
from the Environmental Protection Agency Air Quality Data for 2005-2019 (Columns 1-4) or the
Centers for Disease Control for 2005-2016 (Columns 5-6). Other control variables are indicators for
the daily high temperature below freezing, the daily high temperature above 85 degrees Fahrenheit,
precipitation deciles, BAC limit, and legality of medical and recreational marijuana. There are also
county-by-month, month-year, and day-of-week fixed effects. Standard errors are clustered at the
county level and regressions are weighted by the county population. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table 3: Robustness Checks: Functional Form Specification Using EPA Monitor Pollution
Data

Count LPM Rate IHS Unweighted
(1) (2) (3) (4) (5)

Fatal Crashes: PM2.5 0.0020∗∗∗ 0.0014∗∗∗ 0.0002∗∗∗ 0.0016∗∗∗ 0.0018∗∗∗

(0.0007) (0.0005) (0.0000) (0.0005) (0.0004)
Mean of Crashes 0.3688 0.2500 0.0227 0.3688 0.0990
% Effect 0.54 0.55 0.87 0.44 1.84
N 1,801,586 1,801,586 1,801,586 1,801,586 1,115,019

Fatal Crashes: AQI 0.0006∗∗∗ 0.0004∗∗∗ 0.0001∗∗∗ 0.0005∗∗∗ 0.0005∗∗∗

(0.0002) (0.0001) (0.0000) (0.0002) (0.0001)
Mean of Crashes 0.3699 0.2506 0.0227 0.3699 0.0994
% Effect 0.16 0.16 0.26 0.13 0.54
N 1,787,163 1,787,163 1,787,163 1,787,163 1,103,467

Fatalities: PM2.5 0.0019∗∗ 0.0014∗∗∗ 0.0002∗∗∗ 0.0017∗∗∗ 0.0018∗∗∗

(0.0008) (0.0005) (0.0001) (0.0006) (0.0005)
Mean of Fatalities 0.3951 0.2500 0.0244 0.3951 0.1067
% Effect 0.49 0.55 0.78 0.42 1.66
N 1,801,586 1,801,586 1,801,586 1,801,586 1,115,019

Fatalities: AQI 0.0006∗∗ 0.0004∗∗∗ 0.0001∗∗∗ 0.0005∗∗∗ 0.0005∗∗∗

(0.0002) (0.0001) (0.0000) (0.0002) (0.0001)
Mean of Fatalities 0.3963 0.2506 0.0244 0.3963 0.1071
% Effect 0.14 0.16 0.23 0.12 0.49
N 1,787,163 1,787,163 1,787,163 1,787,163 1,103,467

County FE
County-by-Month FE X X X X X
Month-Year FE X X X X X
Day-of-week FE X X X X X
Weather X X X X X
Demographics
Alcohol/marijuana laws X X X X X

Note: Results from a variation of the estimation specified in Equation 3. The column header
denotes the functional form specification and the row header denotes the outcome variable and
measure of air pollution. Column 1 uses the count of crashes or fatalities as the outcome variable.
Column 2 estimates a linear probability model where the outcome is whether any crashes or fatalities
occur. Column 3 uses the rate per 100,000 population of crashes or fatalities. Column 4 uses an
inverse hyperbolic sine transformation of the outcome variable. Column 5 presents unweighted
Poisson regression results. Outcome variables are from the Fatality Analysis Reporting System
and pollution data are from the Environmental Protection Agency Air Quality Data for 2005-2019.
Other control variables are indicators for the daily high temperature below freezing, the daily high
temperature above 85 degrees Fahrenheit, precipitation deciles, BAC limit, and legality of medical
and recreational marijuana. There are also county-by-month, month-year, and day-of-week fixed
effects. Standard errors are clustered at the county level and regressions are weighted by the county
population. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4: Robustness Checks: Functional Form Specification Using CDC Satellite Pollution
Data

Count LPM Rate IHS Unweighted
(1) (2) (3) (4) (5)

Fatal Crashes: PM2.5 0.0024∗∗∗ 0.0014∗∗∗ 0.0002∗∗∗ 0.0017∗∗∗ 0.0015∗∗∗

(0.0008) (0.0004) (0.0000) (0.0005) (0.0003)
Mean of Crashes 0.2844 0.2021 0.0243 0.2844 0.0715
% Effect 0.83 0.68 0.98 0.61 2.14
N 3,334,786 3,334,786 3,334,786 3,334.786 2,147,434

Fatalities: PM2.5 0.0025∗∗∗ 0.0014∗∗∗ 0.0002∗∗∗ 0.0018∗∗∗ 0.0016∗∗∗

(0.0008) (0.0004) (0.0001) (0.0005) (0.0003)
Mean of Fatalities 0.3060 0.2021 0.0264 0.3060 0.0776
% Effect 0.80 0.68 0.94 0.58 2.06
N 3,334,786 3,334,786 3,334,786 3,334,786 2,147,434

County FE
County-by-Month FE X X X X X
Month-Year FE X X X X X
Day-of-week FE X X X X X
Weather X X X X X
Demographics
Alcohol/marijuana laws X X X X X

Note: Results from a variation of the estimation specified in Equation 3. The column header
denotes the functional form specification and the row header denotes the outcome variable and
measure of air pollution. Column 1 uses the count of crashes or fatalities as the outcome variable.
Column 2 estimates a linear probability model where the outcome is whether any crashes or fatal-
ities occur. Column 3 uses the rate per 100,000 population of crashes or fatalities. Column 4 uses
an inverse hyperbolic sine transformation of the outcome variable. Column 5 presents unweighted
Poisson regression results. Outcome variables are from the Fatality Analysis Reporting System and
satellite pollution data are from the Centers for Disease Control for 2005-2016. Other control vari-
ables are indicators for the daily high temperature below freezing, the daily high temperature above
85 degrees Fahrenheit, precipitation deciles, BAC limit, and legality of medical and recreational
marijuana. There are also county-by-month, month-year, and day-of-week fixed effects. Standard
errors are clustered at the county level and regressions are weighted by the county population. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 5: Robustness Checks: Heterogeneous Effects of AQI

Crashes Fatalities
(1) (2)

AQI 26-50 0.0102∗∗∗ 0.0100∗∗

(0.0036) (0.0043)
AQI 51-100 0.0126∗∗∗ 0.0138∗∗∗

(0.0035) (0.0043)
AQI 101+ 0.0202∗∗ 0.0180∗∗

(0.0086) (0.0088)
Dependent Variable Mean 0.3699 0.3963
N 1,784,293 1,784,293

County FE X X
County-by-Month FE
Month-Year FE X X
Day-of-week FE X X
Weather X X
Demographics X X
Alcohol/marijuana laws X X

Note: Results from a variation of the estimation specified in Equation 3. The measures of pollution
are indicators for whether the air quality index was 26 to 50 (good), 51 to 100 (moderate), or higher
than 100 (unhealthy). The omitted group is an indicator for the air quality index being 25 or less.
Outcome variables are from the Fatality Analysis Reporting System and pollution data are from
the Environmental Protection Agency Air Quality Data for 2005-2019. Demographic controls are
the annual fraction of the population that is Black, Hispanic, other non-white races, male between
the ages of 15 and 24, male other ages, and female between the ages of 15 and 24. Other control
variables are indicators for the daily high temperature below freezing, the daily high temperature
above 85 degrees Fahrenheit, precipitation deciles, the monthly unemployment rate, BAC limit, and
legality of medical and recreational marijuana. There are also county, month-year, and day-of-week
fixed effects. Standard errors are clustered at the county level and regressions are weighted by the
county population. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

34



6 Figures

Figure 1: Pollution Variation Over Time and Geography

Average Annual PM2.5 Concentrations in 2004

Average Annual PM2.5 Concentrations in 2019

Note: Figures show average annual PM2.5 concentrations for North America at a tenth of a degree
resolution for two sample years, 2004 and 2019. Color scale on right-hand axis shows concentration
values in µg/m3 units.
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Figure 2: Randomization Tests

Number of Fatal Crashes

Number of Fatalities

Note: Histogram plots the frequency of estimated coefficients for 250 replications of a randomiza-
tion exercise in which observations for the dependent variable are randomly matched with particu-
late matter exposure and controls from another county. The red line plots the estimated coefficient
without randomization from the estimation specified in Equation 3 shown in Table 2.
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Figure 3: Lagged Particulate Matter Exposure

Number of Fatal Crashes

Number of Fatalities

Note: Figure shows plotted coefficients from from the estimation specified in Equation 3 with
additional lags of particulate matter exposure included.
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A Appendix Figures and Tables

Figure A.1: Coefficient Distribution with Randomly Dropped Subsample

Number of Fatal Crashes

Number of Fatalities

Note: Figure shows plotted coefficients from 250 iterations of the estimation specified in Equation
3 with approximately 5% of all counties randomly dropped in each iteration. Red marker indicates
estimated coefficient from Table 2 with all counties included.
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Table A.1: Robustness Check: The Effect of Air Pollution on Fatal Crashes and Fatalities,
All Years

PM2.5 PM2.5 AQI AQI
(1) (2) (3) (4)

Panel A: OLS Results
Fatal Crashes -0.0000 -0.0002 0.0001 -0.0000

(0.0002) (0.0002) (0.0001) (0.0001)
Mean of Crashes 0.3870 0.3870 0.3879 0.3879
% Effect -0.01 -0.06 0.02 -0.00
N 1,456,320 1,456,320 1,444,768 1,444,768

Fatalities 0.0001 -0.0001 0.0001 0.0000
(0.0003) (0.0002) (0.0001) (0.0001)

Mean of Fatalities 0.4168 0.4168 0.4177 0.4177
% Effect 0.02 -0.03 0.03 0.01
N 1,456,320 1,456,320 1,444,768 1,444,768

Panel B: Instrumental Variables Results
Fatal Crashes 0.0030∗∗∗ 0.0026∗∗∗ 0.0009∗∗∗ 0.0008∗∗∗

(0.0009) (0.0007) (0.0003) (0.0002)
Mean of Crashes 0.3870 0.3870 0.3879 0.3879
% Effect 0.79 0.67 0.24 0.21
N 1,456,320 1,456,320 1,444,768 1,444,768

Fatalities 0.0028∗∗ 0.0023∗∗∗ 0.0009∗∗ 0.0007∗∗

(0.0011) (0.0009) (0.0004) (0.0003)
Mean of Fatalities 0.4168 0.4168 0.4177 0.4177
% Effect 0.67 0.56 0.21 0.17
N 1,456,320 1,456,320 1,444,768 1,444,768

County FE
County-by-Month FE X X X X
Month-Year FE X X X X
Day-of-week FE X X X X
Weather X X
Demographics
Alcohol/marijuana laws X X

Note: Results in Panel A from the estimation specified in Equation 1 and results in Panel B from
the estimation specified in Equation 3. The column header denotes the measure of air pollution
and the row header denotes the outcome variable. The F-statistic for the first-stage regression
for predicted PM2.5 is 531.55 and the F-statistic for the first-stage regression for predicted AQI
is 831.46. Outcome variables are from the Fatality Analysis Reporting System for 1999-2019 and
pollution data are from the Environmental Protection Agency Air Quality Data for 1999-2019.
Other control variables are indicators for the daily high temperature below freezing, the daily high
temperature above 85 degrees Fahrenheit, precipitation deciles, BAC limit, and legality of medical
and recreational marijuana. There are also county-by-month, month-year, and day-of-week fixed
effects. Standard errors are clustered at the county level and regressions are weighted by the county
population. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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